\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^3} \, dx\) [468]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 41, antiderivative size = 132 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {C \text {arctanh}(\sin (c+d x))}{a^3 d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A+2 B-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(6 A+4 B-29 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )} \]

[Out]

C*arctanh(sin(d*x+c))/a^3/d-1/5*(A-B+C)*sec(d*x+c)^2*tan(d*x+c)/d/(a+a*sec(d*x+c))^3-1/15*(3*A+2*B-7*C)*tan(d*
x+c)/a/d/(a+a*sec(d*x+c))^2+1/15*(6*A+4*B-29*C)*tan(d*x+c)/d/(a^3+a^3*sec(d*x+c))

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {4169, 4093, 4083, 3855, 3879} \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {(6 A+4 B-29 C) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {C \text {arctanh}(\sin (c+d x))}{a^3 d}-\frac {(A-B+C) \tan (c+d x) \sec ^2(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(3 A+2 B-7 C) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

[In]

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

(C*ArcTanh[Sin[c + d*x]])/(a^3*d) - ((A - B + C)*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - (
(3*A + 2*B - 7*C)*Tan[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^2) + ((6*A + 4*B - 29*C)*Tan[c + d*x])/(15*d*(a^3
 + a^3*Sec[c + d*x]))

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3879

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4083

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Dist[B/b, Int[Csc[e + f*x], x], x] + Dist[(A*b - a*B)/b, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x]
, x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]

Rule 4093

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(b^2*(
2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4169

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {\int \frac {\sec ^2(c+d x) (a (3 A+2 B-2 C)+5 a C \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A+2 B-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sec (c+d x) \left (-2 a^2 (3 A+2 B-7 C)-15 a^2 C \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4} \\ & = -\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A+2 B-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(6 A+4 B-29 C) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}+\frac {C \int \sec (c+d x) \, dx}{a^3} \\ & = \frac {C \text {arctanh}(\sin (c+d x))}{a^3 d}-\frac {(A-B+C) \sec ^2(c+d x) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(3 A+2 B-7 C) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {(6 A+4 B-29 C) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(277\) vs. \(2(132)=264\).

Time = 3.75 (sec) , antiderivative size = 277, normalized size of antiderivative = 2.10 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=-\frac {\left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right ) \left (240 C \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (5 (3 A+4 B-29 C) \sin \left (\frac {d x}{2}\right )-15 (A-5 C) \sin \left (c+\frac {d x}{2}\right )+15 A \sin \left (c+\frac {3 d x}{2}\right )+10 B \sin \left (c+\frac {3 d x}{2}\right )-95 C \sin \left (c+\frac {3 d x}{2}\right )+15 C \sin \left (2 c+\frac {3 d x}{2}\right )+3 A \sin \left (2 c+\frac {5 d x}{2}\right )+2 B \sin \left (2 c+\frac {5 d x}{2}\right )-22 C \sin \left (2 c+\frac {5 d x}{2}\right )\right )\right )}{15 a^3 d (1+\cos (c+d x))^3 (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x)))} \]

[In]

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^3,x]

[Out]

-1/15*((C + B*Cos[c + d*x] + A*Cos[c + d*x]^2)*(240*C*Cos[(c + d*x)/2]^6*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)
/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) - Cos[(c + d*x)/2]*Sec[c/2]*(5*(3*A + 4*B - 29*C)*Sin[(d*x)/2
] - 15*(A - 5*C)*Sin[c + (d*x)/2] + 15*A*Sin[c + (3*d*x)/2] + 10*B*Sin[c + (3*d*x)/2] - 95*C*Sin[c + (3*d*x)/2
] + 15*C*Sin[2*c + (3*d*x)/2] + 3*A*Sin[2*c + (5*d*x)/2] + 2*B*Sin[2*c + (5*d*x)/2] - 22*C*Sin[2*c + (5*d*x)/2
])))/(a^3*d*(1 + Cos[c + d*x])^3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)]))

Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.75

method result size
parallelrisch \(\frac {-20 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+20 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\frac {10 \left (-B +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{3}-5 A -5 B +35 C \right )}{20 a^{3} d}\) \(99\)
derivativedivides \(\frac {4 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-4 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} C}{3}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A}{5}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} C}{5}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A}{4 d \,a^{3}}\) \(144\)
default \(\frac {4 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-4 C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\frac {4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} C}{3}+\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} A}{5}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} B}{5}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} C}{5}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) C +\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A}{4 d \,a^{3}}\) \(144\)
risch \(-\frac {2 i \left (15 C \,{\mathrm e}^{4 i \left (d x +c \right )}-15 A \,{\mathrm e}^{3 i \left (d x +c \right )}+75 C \,{\mathrm e}^{3 i \left (d x +c \right )}-15 A \,{\mathrm e}^{2 i \left (d x +c \right )}-20 B \,{\mathrm e}^{2 i \left (d x +c \right )}+145 C \,{\mathrm e}^{2 i \left (d x +c \right )}-15 A \,{\mathrm e}^{i \left (d x +c \right )}-10 B \,{\mathrm e}^{i \left (d x +c \right )}+95 C \,{\mathrm e}^{i \left (d x +c \right )}-3 A -2 B +22 C \right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{a^{3} d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{a^{3} d}\) \(185\)
norman \(\frac {\frac {\left (A -B -9 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{10 a d}-\frac {\left (A -B +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{20 a d}-\frac {\left (A +B -7 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a d}-\frac {\left (7 A +3 B -43 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{10 a d}+\frac {\left (9 A +B -11 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{60 a d}+\frac {\left (-59 C +9 A +7 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 a d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3} a^{2}}+\frac {C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{a^{3} d}-\frac {C \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{a^{3} d}\) \(223\)

[In]

int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/20*(-20*C*ln(tan(1/2*d*x+1/2*c)-1)+20*C*ln(tan(1/2*d*x+1/2*c)+1)-tan(1/2*d*x+1/2*c)*((A-B+C)*tan(1/2*d*x+1/2
*c)^4+10/3*(-B+2*C)*tan(1/2*d*x+1/2*c)^2-5*A-5*B+35*C))/a^3/d

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.46 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {15 \, {\left (C \cos \left (d x + c\right )^{3} + 3 \, C \cos \left (d x + c\right )^{2} + 3 \, C \cos \left (d x + c\right ) + C\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (C \cos \left (d x + c\right )^{3} + 3 \, C \cos \left (d x + c\right )^{2} + 3 \, C \cos \left (d x + c\right ) + C\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left ({\left (3 \, A + 2 \, B - 22 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A + 2 \, B - 17 \, C\right )} \cos \left (d x + c\right ) + 3 \, A + 7 \, B - 32 \, C\right )} \sin \left (d x + c\right )}{30 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/30*(15*(C*cos(d*x + c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*log(sin(d*x + c) + 1) - 15*(C*cos(d*x
+ c)^3 + 3*C*cos(d*x + c)^2 + 3*C*cos(d*x + c) + C)*log(-sin(d*x + c) + 1) + 2*((3*A + 2*B - 22*C)*cos(d*x + c
)^2 + 3*(3*A + 2*B - 17*C)*cos(d*x + c) + 3*A + 7*B - 32*C)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(
d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {\int \frac {A \sec ^{2}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{3}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {C \sec ^{4}{\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A*sec(c + d*x)**2/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(B*sec(c
+ d*x)**3/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(C*sec(c + d*x)**4/(sec(c +
 d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.76 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=-\frac {C {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{3}}\right )} - \frac {B {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} - \frac {3 \, A {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(C*((105*sin(d*x + c)/(cos(d*x + c) + 1) + 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 60*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^3 + 60*log(sin(d*x + c)/(cos(d*x + c) +
 1) - 1)/a^3) - B*(15*sin(d*x + c)/(cos(d*x + c) + 1) + 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c
)^5/(cos(d*x + c) + 1)^5)/a^3 - 3*A*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/
a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.36 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {\frac {60 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{3}} - \frac {60 \, C \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{3}} - \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 3 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 10 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 20 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 105 \, C a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

[In]

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*C*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^3 - 60*C*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^3 - (3*A*a^12*ta
n(1/2*d*x + 1/2*c)^5 - 3*B*a^12*tan(1/2*d*x + 1/2*c)^5 + 3*C*a^12*tan(1/2*d*x + 1/2*c)^5 - 10*B*a^12*tan(1/2*d
*x + 1/2*c)^3 + 20*C*a^12*tan(1/2*d*x + 1/2*c)^3 - 15*A*a^12*tan(1/2*d*x + 1/2*c) - 15*B*a^12*tan(1/2*d*x + 1/
2*c) + 105*C*a^12*tan(1/2*d*x + 1/2*c))/a^15)/d

Mupad [B] (verification not implemented)

Time = 15.97 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.02 \[ \int \frac {\sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^3} \, dx=\frac {2\,C\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a^3\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {A-B+C}{12\,a^3}-\frac {A+B-3\,C}{12\,a^3}\right )}{d}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {B-A+3\,C}{4\,a^3}+\frac {A-B+C}{4\,a^3}-\frac {A+B-3\,C}{4\,a^3}\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (A-B+C\right )}{20\,a^3\,d} \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + a/cos(c + d*x))^3),x)

[Out]

(2*C*atanh(tan(c/2 + (d*x)/2)))/(a^3*d) - (tan(c/2 + (d*x)/2)^3*((A - B + C)/(12*a^3) - (A + B - 3*C)/(12*a^3)
))/d - (tan(c/2 + (d*x)/2)*((B - A + 3*C)/(4*a^3) + (A - B + C)/(4*a^3) - (A + B - 3*C)/(4*a^3)))/d - (tan(c/2
 + (d*x)/2)^5*(A - B + C))/(20*a^3*d)